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Abstract
Recently Nieminen introduced in this journal a 4 × 4 random matrix to
study transitional distributions between Wigner surmises of random matrix
theory. We find analytical expressions for the distributions that they obtained
numerically. We also study the Ginibre-to-GOE transition.

PACS numbers: 02.50.−r, 05.40.−a, 02.10.Yn

In a recent paper in this journal, Nieminen [1] introduced a random matrix H that transitions
through all Wigner surmises. He studied the transitional distributions numerically (except
GOE-to-GUE, which was done analytically). Here, we derive those results analytically and
also study a new one, Ginibre-to-GOE. The relevance to physics of analytical results is that
it helps in understanding system transitions induced by external parameters. An analogy
is the transition between Poisson and Wigner-Dyson statistics (indicating the evolution from
integrability to chaos) induced by the strength of an impurity in quantum spin chains [2]. Other
work on analytical results on the spacing distribution of small dimension random matrices has
been published recently [3].

For a/2, b/2, c, d, e, f Gaussian distributed random variables of mean zero and variance
1, and αj is a real parameter in the range 0 � αj � 1:

H =

⎛
⎜⎜⎝

a 0 c 0
0 a 0 c

c 0 b 0
0 c 0 b

⎞
⎟⎟⎠ + iα1

⎛
⎜⎜⎝

0 0 d 0
0 0 0 −d

−d 0 0 0
0 d 0 0

⎞
⎟⎟⎠

+ α2

⎛
⎜⎜⎝

0 0 0 e

0 0 −e 0
0 −e 0 0
e 0 0 0

⎞
⎟⎟⎠ + iα3

⎛
⎜⎜⎝

0 0 0 f

0 0 f 0
0 −f 0 0

−f 0 0 0

⎞
⎟⎟⎠ . (1)

For each (α1α2α3), the eigenvalues of H are double degenerate. The near-neighbor spacing is

s = 2
√

g2 + c2 + α2
1d

2 + α2
2e

2 + α2
3f

2, (2)

where 2g = a − b and consequently has zero mean and variance 1.
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It is shown in [1] that the probability density function of s
2 is obtained by randomly

sampling an N-dimensional (the limiting cases are N = 5 if all α are nonzero, and N = 2 if all
are zero) space using the following probability density function:

�(g, c, d, e, f ;α1, α2, α3) = 1

2π

[
M+2∏
i=1

(
1√

2πα̃i

)]
exp

[
−1

2

M+2∑
i=1

(
xi

α̃i

)2
]

, (3)

where x1 = g etcetera, α̃1 = α̃2 = 1, α̃3 = α1, α̃4 = α2, α̃5 = α3 (unless some of the αi vanish
as explained below) and M is the number of α that are nonzero (if αj = 0, the corresponding
variable in equation (2) does not contribute, and the dimensionality N of the space is reduced
in one unit).

For example, if no α vanishes, M = 3 and �x is five dimensional. In that case, the
coordinates can be parametrized in hyperspherical coordinates [4]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = x5 = s

2
cos ξ

e = x4 = s

2
sin ξ cos ψ

d = x3 = s

2
sin ξ sin ψ cos θ

c = x2 = s

2
sin ξ sin ψ sin θ cos ϕ

g = x1 = s

2
sin ξ sin ψ sin θ sin ϕ

0 � ϕ � 2π 0 � θ, ψ, ξ � π. (4)

Then the desired probability density function F corresponds to all points �x in a thin shell
around s

2 , namely s
2 � |�x| � s

2 + d
(

s
2

)
(where d here represents a differential, not to be

confused with the parameter introduced in (1)):

F(s, α1, α2, α3) ds = d(s/2)

(2π)5/2α1α2α3

∫ 2π

0

∫ π

0

∫ π

0

∫ π

0

[( s

2

)4
sin3 ξ sin2 ψ sin θ dξ dψ dθ dϕ

]

× exp

[
−
( s

2

)2
(

sin2 ξ sin2 ψ sin2 θ +
sin2 ξ sin2 ψ cos2 θ

α2
1

+
sin2 ξ cos2 ψ

α2
2

+
cos2 ξ

α2
3

)]
. (5)

The expression inside the first square bracket corresponds to the volume of the thin shell of
width ds/2. Similar expressions are obtained when two α are zero (integral in 3D space), and
when only one α vanishes (integral in 4D space). In all cases, the integral in ϕ equals 2π and
thus the problem reduces to performing a triple, double, or single integral.

In [1] the probability density function (pdf) was found numerically for GUE-to-Ginibre
and Ginibre-to-GSE.

Pdf for GUE-to-Ginibre

This transitional case corresponds to α1 = 1, α3 = 0, 0 � α2 � 1. Call α2 = α; then

F(s, α) = s3

16πα

∫ π

0
e− s2

8 (sin2 ψ+ cos2 ψ

α2 ) sin2 ψ dψ, (6)

which can be rewritten as

F(s, α) = s3

16πα
e− s2

8α2

∫ π

0
e

s2

8 ( 1−α2

α2 ) sin2 ψ sin2 ψ dψ. (7)
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Thus, the problem reduces to finding the integral

�(μ) =
∫ π

0
eμ sin2 ψ sin2 ψ dψ, (8)

where we have defined the parameter μ = s2

8

(
1−α2

α2

)
.

It is immediate that

�(μ) = 2
d

dμ

∫ π
2

0
eμ sin2 ψ dψ = 2

d

dμ

∫ π
2

0
e

μ

2 (1−cos 2ψ) dψ = d

dμ

[
e

μ

2

∫ π

0
e− μ

2 cos τ dτ

]
. (9)

The integral in the square bracket is πI0 (μ/2) [5]; then

�(μ) = π

2
eμ/2[I0(μ/2) + I1(μ/2)], (10)

where In are modified Bessel functions [5], and we have used the properties of their derivatives.
Thus, the transitional (GUE-to-Ginibre) pdf in equation (7) is

F(s, α) = s3

32α
e− s2

16 ( 1+α2

α2 )

[
I0

(
s2

16

(
1 − α2

α2

))
+ I1

(
s2

16

(
1 − α2

α2

))]
. (11)

One is typically interested in the pdf for � ≡ s
〈s〉 , where 〈s〉 is the mean of the pdf in

equation (11). To that end we need to compute

〈s〉 =
∫ ∞

0
sF (s, α) ds. (12)

Instead of using equation (11) directly, we return to equation (7) and write the mean explicitly
as

〈s〉 =
∫ ∞

0
s ds

s3

16πα
e− s2

8α2

∫ π

0
e

s2

8 ( 1−α2

α2 ) sin2 ψ sin2 ψ dψ. (13)

The integral in s is of the form
∫∞

0 s4 e−
s2
ds, which can be written immediately as 3

√
π

8
5/2 .
Thus, (13) reduces to

〈s〉 = 3
√

8α4

2
√

π

∫ π

0

sin2 ψ

[1 − (1 − α2) sin2 ψ]5/2
dψ

= 3
√

8α4

√
π

∫ π/2

0

sin2 ψ

[1 − η sin2 ψ]5/2
dψ, (14)

where we called η = 1 − α2 in the last integral. Then

〈s〉 = 3
√

8α4

√
π

{
2

3

d

dη

∫ π/2

0

dψ

[1 − η sin2 ψ]3/2

}
. (15)

The integral in equation (15) reduces to the complete elliptic of the first kind, E(η) [6] so that

〈s〉 = 4
√

2α4

√
π

d

dη

[
E(η)

1 − η

]
, (16)

with the notation of AMS-55 [5].
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Figure 1. The transitional GUE-to-Ginibre pdfs F(�, α) have norm and mean 1. Here shown are
the pdfs for values of α = α2 ranging from 0 to 1.

Using [7], 2η dE
dη

= E(η) − K(η), where K(η) is the complete elliptic integral of the
second kind, equation (16) becomes

〈s〉 = 4
√

2α4

√
π

(1 + η)E(η) − (1 − η)K(η)

2η(1 − η)2
= 2

√
2√

π

(2 − α2)E(1 − α2) − α2K(1 − α2)

1 − α2
.

(17)

Finally, using equation (11),

F(�, α) = 〈s〉 (〈s〉�)3

32α
e− (〈s〉�)2

16 ( 1+α2

α2 )

×
[
I0

(
(〈s〉�)2

16

(
1 − α2

α2

))
+ I1

(
(〈s〉�)2

16

(
1 − α2

α2

))]
, (18)

where 〈s〉 is explicitly given in equation (17).
Figure 1 shows plots of equation (18) for 0 � α � 1. As expected, the slope at the

origin decreases as α increases (corresponding to the transition from ∼�2 to ∼�3). There is
a substantial change in the value at the peak (about 20%), although the position of the peak
changes only slightly.

Pdf Ginibre-to-GSE

This transitional case corresponds to α1 = α2 = 1, 0 � α3 � 1. Call α3 = α; then

F(s, α) = s4

64
√

2πα

∫ π

0
e− s2

8 (sin2 ψ+ cos2 ψ

α2 ) sin3 ψ dψ. (19)

This integral can be solved by the change of variables x = cos ψ :

F(s, α) = s4

32
√

2πα

∫ 1

0
e− s2

8 (1−x2+ x2

α2 )
(1 − x2) dx

= s4 e− s2

8

64
√

2πα

{
e−μ

μ
+

√
π (2μ − 1) Erf(

√
μ)

2μ3/2

}
, (20)

where Erf is the error function and, as before, μ ≡ s2

8

(
1−α2

α2

)
.
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Figure 2. The transitional Ginibre-to-GSE pdfs F(�, α) have norm and mean 1. Here shown are
the pdfs for values of α = α3 ranging from 0 to 1.

To evaluate the mean value of s, we return to equation (19):

〈s〉 =
∫ π

0

sin3 ψ dψ

64
√

2πα

∫ ∞

0
s4 e− s2

8 (sin2 ψ+ cos2 ψ

α2 )
s ds =

∫ π

0

sin3 ψ dψ

64
√

2πα
× 83(

sin2 ψ + cos2 ψ

α2

)3 .

(21)

Again, by writing x = cos ψ , the integral becomes elementary and yields

〈s〉 =
√

2

π

{
α(3 − 2α2)

1 − α2
+

3 − 4α2

(1 − α2)3/2
arccos α

}
. (22)

Thus, from equation (20)

F(�, α) = 〈s〉 (〈s〉�)4 e− (〈s〉�)2

8

64
√

2πα

{
e−μ̂

μ̂
+

√
π (2μ̂ − 1) Erf(

√
μ̂)

2μ̂3/2

}
, (23)

with μ̂ ≡ s2

8

(
1−α2

α2

)
and 〈s〉 given by (22).

Figure 2 shows graphs of the corresponding pdfs.

Pdf Ginibre-to-GOE

This is �α = (0 0 0) → (1 1 0), or �α = α(1 1 0) with 0 � α � 1, such that s =
2
√

g2 + c2 + α2d2 + α2e2. The space associated with equation (3) is four dimensional and
the probability density becomes (after the integration in ϕ)

F(s, α) = s3

32πα2

∫ π

0

∫ π

0
e− s2

8 (sin2 ψ sin2 θ+ sin2 ψ cos2 θ+cos2 ψ

α2 ) sin2 ψ sin θ dψ dθ. (24)

The expression is then integrable in θ by putting x = cos θ :

F(s, α) = s3

32πα2

2
√

2πα

s
√

1 − α2

∫ π

0
e− s2

8α2 (α
2 sin2 ψ+cos2 ψ)Erf

(
s
√

1 − α2 sin ψ

2
√

2α

)
sin ψ dψ. (25)

We were not able to integrate the expression above exactly. However, good progress is
achieved by noting that F(s, α) is the product of a simple, explicit function of α and s, with a

5
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Figure 3. Transitional pdf for GOE-to-Ginibre.

parametric integral in the lumped variable s
√

1−α2

2
√

2α
:

F(s, α) = s3

32πα2

2
√

2πα e− s2

8

s
√

1 − α2
�(ξ), (26)

where ξ ≡ s
√

1−α2

2
√

2α
, and

�(ξ) =
∫ π

0
e−ξ 2 cos2 ψ Erf(ξ sin ψ) sin ψ dψ. (27)

From the domains of s and α, the new variable can take values 0 � ξ < +∞. To simplify the
study, we introduce y such that ξ = y

1−y
, and 0 � y � 1. We found an accurate representation

of �(y), to within 1% in 0 � y � 1:

�(y) = y(1 − y)
∑

n

anT2n(y), (28)

where Tm(y) are the Chebyshev polynomials of order m of the first kind and an are constant
coefficients, a0 = 2.300, a1 = −0.997, a2 = −0.284, a3 = 0.118, a4 = −0.225,
a5 = −0.100.

Surprisingly, the mean 〈s〉 can be obtained exactly if we return to equation (24) and first
integrate the right-hand side times s from 0 to ∞. The result is

〈s〉 =
∫ π

0

∫ π

0

3α3 sin θ sin2 ψ dψ dθ√
2π [cos2 ψ + (cos2 θ + α2 sin2 θ) sin2 ψ]5/2

. (29)

The integral in θ can then, as before, be obtained by a change of variables:

〈s〉 =
∫ π

0

4
√

2
π
α3 sin2 ψ(2 + cos2 ψ + α2 sin2 ψ) dψ

[1 + α2 + (1 − α2) cos 2ψ]2
(30)

which is

〈s〉 =
√

2π
1 + α + α2

1 + α
. (31)

Figure 3 shows the pdfs for 0 � α � 1. This graph is qualitatively different from those shown
in figures 1 and 2. This difference is most noticeable for values of � < 1, and it is due to the
linear to cubic transition of the pdfs in the neighborhood � ≈ 0.
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