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Abstract

Recently Nieminen introduced in this journal a 4 x 4 random matrix to
study transitional distributions between Wigner surmises of random matrix
theory. We find analytical expressions for the distributions that they obtained
numerically. We also study the Ginibre-to-GOE transition.

PACS numbers: 02.50.—r, 05.40.—a, 02.10.Yn

In a recent paper in this journal, Nieminen [1] introduced a random matrix H that transitions
through all Wigner surmises. He studied the transitional distributions numerically (except
GOE-to-GUE, which was done analytically). Here, we derive those results analytically and
also study a new one, Ginibre-to-GOE. The relevance to physics of analytical results is that
it helps in understanding system transitions induced by external parameters. An analogy
is the transition between Poisson and Wigner-Dyson statistics (indicating the evolution from
integrability to chaos) induced by the strength of an impurity in quantum spin chains [2]. Other
work on analytical results on the spacing distribution of small dimension random matrices has
been published recently [3].

Fora/2,b/2, c, d, e, f Gaussian distributed random variables of mean zero and variance
1, and «; is a real parameter in the range 0 < o; < 1:

a 0 ¢ 0 0 0 d 0
H— 0 a 0 ¢ i 0 0 0 —d
“le o b o T"|=d 0 0 o
0 ¢ 0 b 0 d4 0 0
0 0 0 e 0 0o 0 f
0 0 —e O . 0 0 f O
T o e 0 o]0 —f 0 o M
e 0 0 O -f 0 0 0
For each (ajoa3), the eigenvalues of H are double degenerate. The near-neighbor spacing is
s:2\/g2+cz+afd2+a§ez+a§f2, ()

where 2g = a — b and consequently has zero mean and variance 1.
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It is shown in [1] that the probability density function of 3 is obtained by randomly
sampling an N-dimensional (the limiting cases are N = 5 if all « are nonzero, and N = 2 if all
are zero) space using the following probability density function:

1 M+2 1 1M+2 X 2
8.c.d.e. fran, o, 03) = 7 [1_[ ( 2715@)} eXp[ > 21: <&i> } : 3)

i=

i=

where x; = g etcetera, @; = &, = 1, &3 = o1, G4 = oy, & = a3 (unless some of the ¢; vanish
as explained below) and M is the number of « that are nonzero (if o; = 0, the corresponding
variable in equation (2) does not contribute, and the dimensionality N of the space is reduced
in one unit).

For example, if no o vanishes, M = 3 and X is five dimensional. In that case, the
coordinates can be parametrized in hyperspherical coordinates [4]:

f:xszgcosé
e=X4:%sinécosw
s . .
d:x3=§sm§sm¢cos9 0<p<2r 0K0,y,&E <. 4)

s . . .
c=xy= ESIHFESIHW sin 0 cos ¢

s
g=x = Esin&sinw sin 6 sin ¢

Then the desired probability density function F corresponds to all points X in a thin shell
around ’, namely % < ¥ < % + d(%) (where d here represents a differential, not to be
confused with the parameter introduced in (1)):

2
Fs.ay. a0 as)ds = — 90/ f/// [- sm3§sin2wsin9d§dwd9d¢]

(27‘[)5/20[10{20{3

2 2 2 0
X exp |:— (%) (sin2 £ sin® ¢ sin® 0 + sin’§ sin  cos

2
o

sin? £ cos>  cos? &
+ . +— )
o3 o?

(&)

The expression inside the first square bracket corresponds to the volume of the thin shell of
width ds /2. Similar expressions are obtained when two « are zero (integral in 3D space), and
when only one « vanishes (integral in 4D space). In all cases, the integral in ¢ equals 27 and
thus the problem reduces to performing a triple, double, or single integral.

In [1] the probability density function (pdf) was found numerically for GUE-to-Ginibre
and Ginibre-to-GSE.

Pdf for GUE-to-Ginibre

This transitional case corresponds to oy = 1, 3 = 0,0 < o < 1. Call o, = «; then

s> T2yt
F(s,a) = 16 e 8 ) sin ¢ d, (6)
T Jo
which can be rewritten as
3 27 2= g
F(s,a) = T e_Salf e v U Y gin? yr dy. (7)
T 0
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Thus, the problem reduces to finding the integral

S(w) = f e gip? ¥ dy, (8)
0

where we have defined the parameter y = % ( ];‘2"2).
It is immediate that

\\NY(M) _ Zi f? eMSinzl// dw _ zi /7 e%(l—cos%]/) dw — i I:eg / ef%cosr dT:| . 9)
du Jo du Jo du 0
The integral in the square bracket is 7 Iy (1t/2) [5]; then
T
3w = Z o (1/2) + Li(1/2)], (10)

where I, are modified Bessel functions [5], and we have used the properties of their derivatives.
Thus, the transitional (GUE-to-Ginibre) pdf in equation (7) is

Fisay = 2 et [ (£ (1222 ) (2 (122 (11)
" T 300 "\16 \ a2 "\16 U 2 '

, where (s) is the mean of the pdf in

One is typically interested in the pdf for h = @—)
equation (11). To that end we need to compute

(s) = /OOSF(s,ot) ds. (12)
0

Instead of using equation (11) directly, we return to equation (7) and write the mean explicitly
as

00 3 2 T2 L2
(s) = / sds 16Smx e s? e TSIV 2 ¥ dy. (13)
0 0

The integral in s is of the form fooo s*eT5" ds, which can be written immediately as ;r—‘éj/?z.
Thus, (13) reduces to

(s) 3/8a* [T sin®
S) =
27 Jo [1—(1—a?)sin?y
B 3V/8a* [7/? sin? ¥
VTl sy
where we called n = 1 — o in the last integral. Then
3Bt [2d [”/2 dy
 vm 3dn )y 1 —psin2y P
The integral in equation (15) reduces to the complete elliptic of the first kind, E (1) [6] so that
i5) 4/20* d [ E(n)
sy = — ,
JT odnp|1—n
with the notation of AMS-55 [5].

152 dy

dy, (14)

(s)

15)

(16)
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FR, @)

Figure 1. The transitional GUE-to-Ginibre pdfs F (), o) have norm and mean 1. Here shown are
the pdfs for values of @ = «; ranging from O to 1.

Using [7], 217% = E(n) — K(n), where K(n) is the complete elliptic integral of the
second kind, equation (16) becomes
_ W2 A+ mEm — (L =mKm _ V22 -e?)E(1 —o?) —’K(1 —a?)
VT 2n(1 — n)? N 1—a?

(s)
(17)
Finally, using equation (11),

: M2 (Lt
F(R, a) = (S)M o e 2,
32a

(s)M)? (1 —a? (s)M)? (1 —a?
[o(Se- ()0 (56 () s

where (s) is explicitly given in equation (17).

Figure 1 shows plots of equation (18) for 0 < o < 1. As expected, the slope at the
origin decreases as « increases (corresponding to the transition from ~%? to ~03). There is
a substantial change in the value at the peak (about 20%), although the position of the peak
changes only slightly.

Pdf Ginibre-to-GSE

This transitional case corresponds to o = o, = 1,0 < a3 < 1. Call a3 = «; then

Foa = /” TR iy ay (19)
5,0) = ——— e <2/ sin .

642 Jo
This integral can be solved by the change of variables x = cos y:

4 1 2 2
— 2 (1—x2+5) 2
— [ e 2 (1 — x?) dx
324/ 2o /o
sted {ﬂ L VT Q- l)Erf(ﬁ)}
6427 | 1 232 ’

. . 2 2
where Erf is the error function and, as before, u = % ( 10[? )

F(s,a) =

(20)
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Figure 2. The transitional Ginibre-to-GSE pdfs F (), «) have norm and mean 1. Here shown are
the pdfs for values of o« = a3 ranging from O to 1.

To evaluate the mean value of s, we return to equation (19):

T oind 00 X T o3l 3
m):‘/ M ‘fe’%@“W#%lkds=i/ AL i e
0 64 2ma Jo 0 6427« (sin2 v+ C";_z‘/’)

2

Again, by writing x = cos ¥, the integral becomes elementary and yields

2 faB— 20%) 3 — 4a?
(s) = \/;{ [ + 1 o) arccosa} . (22)

Thus, from equation (20)

(s)m?
8

(s)M)e 5 {ﬂ L YT 1>Erf<¢ﬁ)}
64+/2c i 2032 '

with 2 = & (122°) and (s) given by (22).
Figure 2 shows graphs of the corresponding pdfs.

FOR, ) = (s) (23)

Pdf Ginibre-to-GOE

This is @ = (000) — (110), or @ = «a(110) with 0 < o < 1, such that s =
2/g% +c* + a2d? + a2e?. The space associated with equation (3) is four dimensional and
the probability density becomes (after the integration in ¢)

& T 4 s2 e 3 sin? ¥ cos? f-+cos?
F(s,a) = 3;—2 / / ¢ (Sin® y sin® 0+ EESLESTE) (02 sin @ dy 6. 24)
wa Jo Jo
The expression is then integrable in 8 by putting x = cos 6:
53 22w 4 efs%z(az sin2 yr+cos? l/j)El‘f sa/1 —a?siny
R2ra? g1 —a? Jo 2/20

We were not able to integrate the expression above exactly. However, good progress is
achieved by noting that F (s, «) is the product of a simple, explicit function of « and s, with a

F(s,0) = )sim/fdl//. (25)
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Figure 3. Transitional pdf for GOE-to-Ginibre.

parametric integral in the lumped variable * ;\1/%:2 :
3 2
K 2 /2ma e
F(s,a) = J(E), 26
(s, ) T R 3(€) (26)
_ si/1—a?
where & = WP and
T
J(E) = f e & <"V Brf(£ sin ) sin ¢ dyp. Q7
0
From the domains of s and «, the new variable can take values 0 < & < +o0o. To simplify the
study, we introduce y such that £ = %, and 0 < y < 1. We found an accurate representation
of J(y), to within 1% in0 <y < 1:

() =y =) Y anTa(y), (28)
where 7, (y) are the Chebyshev polynomials of order m of the first kind and a,, are constant
coefficients, ag = 2.300, a; = —0.997, a, = —0.284, a3 = 0.118, a4, = —0.225,
as = —0.100.

Surprisingly, the mean (s) can be obtained exactly if we return to equation (24) and first
integrate the right-hand side times s from O to co. The result is

[ 3a? sin 6 sin? ¥ dyr d@
s) = : . : (29)
0 Jo +/2m[cos? ¢ + (cos? O + a? sin? 0) sin? |3/
The integral in 6 can then, as before, be obtained by a change of variables:
7 4,/ 203 sin® (2 + cos? ¥ + o sin? ) dyr
- 30
W /0 [1+a?+ (1 —a?)cos2y]? (30)
which is
l+a+a?
(s) = \/271&, 31)

l+a
Figure 3 shows the pdfs for 0 < o < 1. This graph is qualitatively different from those shown
in figures 1 and 2. This difference is most noticeable for values of h < 1, and it is due to the
linear to cubic transition of the pdfs in the neighborhood N = 0.
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